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as "stable thiabenzenes," which have been shown not to be 
authentic thiabenzenes.2 Indeed, treatment of 10-seleno-
xanthylium and 9-phenyl-10-selenoxanthylium perchlorates 
with excess phenyllithium in ether, as described,5 afforded 
powdery tan solids 6 and 7, respectively.24 Both of these 
products are evidentially (molecular weights; mass, nmr, 
and uv spectra) not 10-selenaanthracenes 2 and 3 but are 
oligmers of undetermined composition. This conclusion is 
consistent with the observation5-6 that deprotonation of 9-
phenyl-10-p-anisylselenoxanthenium perchlorate (8) by so­
dium hydride in tetrahydrofuran is followed by rearrange­
ment to 9-phenyl-9-p-anisylselenoxanthene (9). Since this 
reaction must proceed through a 10-selenaanthracene inter­
mediate, 10, the latter can only have a transient existence, 

C l O 4 " I I 
CHH.-P-OCH, CH4-P-OCH:, 

8 9 10 

in complete analogy with the corresponding sulfur com­
pounds.2 Thus, the solid substances isolated5 from the reac­
tion of phenyllithium with selenoxanthylium salts are assur­
edly not selenaanthracenes. 
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18O Exchange Studies on V ]0O286 in Aqueous Media 

Sir: 

Over recent years a continuing interest has been shown in 
the aqueous polymerization of ions of the type M O 4 " - , in­
cluding VO 4

3 - . 1 ' 2 While the understanding of the vanadi­
um system has improved, little structural information nor 
modes of reaction are available even in aqueous media. The 
decavanadate ion V;o0286~ appears to be a well-defined, 
easily prepared ion3 and may be the best starting point for 
future studies in the vanadium(V) system. Thus it is vital 
that the aqueous nature of this ion be well understood. 
While solid structures containing the ion have been re­
ported4 '5 they can only suggest the structure of the ion in 
solution. Likewise the precise potentiometric and spectral 
studies6-7 do not give much information about the exact 
species present in solution. A kinetic study of oxygen ex­
change between solutions of (NH4)6Vio028-6H20 and H2O 
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utilizing 18O does give considerable insight into this ques­
tion, and preliminary results are reported here. 

It is known8 that acidification of solutions of Na3VO4 

(pH 3-6) rapidly and nearly quantitatively gives solutions 
having the same visible spectral properties as those obtained 
by dissolving solid (NH4)6V10O28-6H2O or CS6V10O28. The 
crystal structure of two closely related compounds 
K2Zn2V1 0O2 8-IeH2O and Ca3V1 0O2 8-HH2O4-5 shows the 
solids contain the anion V 1 0 O 2 8

6 - . In basic media (pH 8-
10) decomposition of this ion to less polymerized ions, i.e., 
(VO3-),, and H V O 4

2 - , is quite slow (k = 5 X 1O-5 sec"1, 
25°).9 (NH4)6V1 0O2 8-6H2O dissolves readily in water and 
anhydrous Cs6V10O28 is nearly quantitatively precipitated 
with excess CsCl. Traces of absorbed water are readily re­
moved at 100° under 1O -4 Torr. Thus this system is amena­
ble to precise 18O exchange studies. 

Our experiments consisted of dissolving (NH4)6V1 0O2 8-
6H2O in 18O enriched water at the desired temperature and 
adding solid CsCl to aliquots at selected time intervals. The 
Cs6V10O28 was collected, dried, and the oxygen in it con­
verted to CO2 by reaction with Hg(CN) 2 in a sealed tube.10 

The isotopic composition of the CO2 was determined by 
mass spectrometry (Nuclide RMS-6). 

Preliminary experiments showed that at short contact 
times (~2 min) the oxygen isotopic composition of 
Cs6V1 0O2 8 was exactly (±1%) that of the (NH4)6V1 0O2 8-
6H2O and not that of the enriched solvent. Thus the oxy­
gens are slow to exchange and the procedure does not in­
duce exchange. Two complete kinetic runs have been car­
ried out at this time. Under nearly identical experimental 
conditions they gave nearly identical (±1%) results. A cal-
comp graph of In (1 — F) vs. time for the second run is 
given in Figure 1, the line being the least-squares fit to the 
data. Less than 1% zero exchange was observed. The last 
entry (other than the °° value) corresponded to 25.4 oxy­
gens exchanged (assuming 28 total). Since the reaction was 
not followed to completion, a possibility exists that 2 of the 
28 oxygens are slow to exchange. Using a calculated » 
value based on 26 oxygens exchanging gave a highly up­
ward curved graph proving this postulate incorrect. The lin­
earity of the graphed data strongly suggests that by whatev­
er mechanism exchange occurs, all oxygens exchange equiv-
alently. This is surprising since there are several types of 
oxygen in the ion differing widely in their availability to sol­
vent interaction. Eight are singly vanadium bound, 14 dou­
bly, 4 triply, and 2 have six vanadium nearest neighbors and 
appear to be completely shielded from association with the 
solvent. 

During the study no spectral change was observed (quali­
tatively) but the pH changed from 7.2 to 6.7. 
/?N((NH4)6V1 0O2 8-6H2O) = 3.927 X 1O-3, / ? N (enriched 
H2O) = 14.87 X 10-3 , /?Nc° = 9.38 X 1O-3, RN<» calcd = 
9.35 X 1O-3.11 The [V1 0O2 8

6 -] = 0.044 M and the reaction 
was shielded from atmospheric CO2 and light. The observed 
exchange rate constant A:0bsd was 1.32 ± 0.01 X 1O -5 

sec - 1 ' ' at 25°. For comparison the first-order rate constant 
of dissociation of V 1 0 O 2 8

6 - in buffered (pH 8-10) solutions 
by Goddard and Gonas9 was 4.9-5.4 X 10 - 5 sec - 1 at 25° 
with N H 4

+ + N H 3 buffer and u- = 2.5(LiCl). 
If one accepts the likely postulate that V 1 0 O 2 8

6 - is pres­
ent in both solid salts, (NH4)6V10O28-6H2O and 
Cs6Vi0O28 , as strongly suggested by X-ray powder studies, 
then the lack of zero time exchange proves that this ion ex­
ists essentially unchanged in water solution. Solvation and 
protonation probably occur but they must not cause expan­
sion or contraction of the first coordination sphere of any 
vanadium ion. The equivalence of all oxygens in their isoto­
pic exchange rate over a longer time period strongly 

1 6 X 1 0 * SEC. 

Time 

Figure 1. 18O exchange between V10C>286- and FhO, 25°. 

suggests reversible dissociation to (VOm
n~)p units prior to 

or at the same moment as exchange occurs. W h e n pictured 
as a symmetr ical dissociation the equation is 

V10O28
6" + 2H2O* ^ 2(V5O14O*) 4H+ 

The degrees of aggregat ion in the dissociating units and the 
values of .Kdiss are unknown. Finally this ra te constant for 
exchange is of the same order of magni tude as the ra te con­
stant of irreversible dissociation at high pH ' s (1.3 compared 
to 5.2) X 1O - 5 s e c - 1 under otherwise mildly differing solu­
tion conditions. These may or may not be identical, but 
again suggest that reversible dissociation is the pr imary 
pa thway for exchange. Because of the potential significance 
of this comparison, new studies of both rates are being 
m a d e together with the p H and concentrat ion dependencies 
and are expected to give a more detailed mechanis t ic pic­
ture of the kinetic behavior of V 1 0 O 2 8

6 - in aqueous media. 
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Designed Synthesis of the CrMoCIg3 Anion 

Sir: 

Oxidative displacement of CO from Mo(CO) 4 Cl 3
- by 

MoCl 6 " - (n = 1 or 2) in CH2Cl2 has been shown recent-
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